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The effect of surface and hydrodynamic forces on the
shape of a fluid drop approaching a solid surface

R G Horn†, D J Bachmann, J N Connor and S J Miklavcic‡
Ian Wark Research Institute and School of Applied Physics, University of South Australia, The
Levels, SA 5095, Australia
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Abstract. This paper describes an experiment designed to measure surface and hydrodynamic
forces between a mercury drop and a flat mica surface immersed in an aqueous medium. An
optical interference technique allows measurement of the shape of the mercury drop as well as its
distance from the mica, for various conditions of applied potential, applied pressure, and solution
conditions. This enables a detailed exploration of the surface forces, particularly double-layer
forces, between mercury and mica. A theoretical analysis of drop shape under the influence of
surface forces shows that deformation of the drop is a sensitive indicator of the forces, as well
as being a very important factor in establishing the overall interaction between the solid and the
fluid.

1. Introduction

The physical interactions of fluid drops with each other, with solid particles, or with solid
surfaces, are very important in determining the behaviour of numerous systems such as
emulsions, foams, and mineral flotation processes. While the surface forces acting between
solids have been studied extensively in recent years and direct measurements have been
made using surface force apparatus and atomic force microscope techniques, much less
work has been done on interactions involving fluid interfaces. Clearly, the deformability of
such interfaces will be an important factor in interactions involving fluid drops, whereas it
is rarely an issue in colloidal interactions between solids. In addition, deformations caused
by hydrodynamic pressure on a moving drop can be very significant, especially when the
drop approaches another body.

In this paper we describe a combined theoretical and experimental approach to exploring
how forces involving fluid drops are influenced by interfacial deformations. Initially our
focus is on surface forces rather than hydrodynamic forces, and we consider the interaction
between a non-aqueous fluid drop interacting with a flat solid surface, when both are
immersed in an aqueous phase. A theoretical analysis presented in the next section illustrates
some general features of interactions involving deformable drops. This is followed by
a description of our experimental set-up, which allows measurements of forces, surface
separations and drop deformations when a drop of mercury is brought close to a mica
surface in water.
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‡ Present address: Department of Physics and Measurement Technology, Linköping University, S-581-83
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Figure 1. The experimental arrangement used to measure deformations in the shape of a mercury
drop as it approaches a flat mica surface, when they are separated by an aqueous phase. Due to
optical interference between the partially reflecting silver layer and the mercury, reflected light
has (dark) fringes of equal chromatic order which are measured in an imaging spectrograph to
yield D(r).

2. Theoretical details

The shape of a fluid interface is established by the forces acting on it, which can include
surface or interfacial tensions, gravitational forces and forces due to interaction with another
object. Here we consider a protruding drop at the open end of a cylindrical capillary which
is pointing vertically upwards. This configuration, shown in figure 1, corresponds to the
experimental system to be described in the next section. Above the drop is a horizontal
solid surface with which the drop may interact via surface forces, for example, electrical
double-layer and van der Waals forces. The drop and the solid are immersed in a second
fluid, which is less dense than the fluid in the drop.

From the Young–Laplace equation, the local curvature at any point on the drop’s surface
is determined by the pressure difference between the interior and the exterior of the drop.
This can be expressed as [1, 2]

γ

[
z′′(r)

(1 + z′(r)2)3/2
+ z′(r)

r(1 + z′(r)2)1/2

]
= 1ρ gz(r) + 5(r) − Papp (1)

whereγ is the fluid–fluid interfacial tension, the two terms in the square brackets represent
the principal curvatures orthogonal and parallel to the radial directionr, 1ρ is the difference
between the fluid densities,g is the gravitational acceleration,5(r) is the disjoining pressure,
i.e., the pressure acting on the drop due to surface force interactions with the solid surface,
andPapp is the pressure within the drop causing it to protrude from the capillary, measured
immediately below the drop apex. The cylindrical polar coordinate system has its origin at
the apex of the drop with thez-axis vertical and directed towards the solid surface, which
lies in the planez = D0 (see figure 1).

In the absence of disjoining pressure, this is the equation describing the shape of a
sessile drop. With disjoining pressure present due to a nearby solid surface, we invoke the
Derjaguin approximation, and consider the disjoining pressure at the radial distancer to be
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equal to that between flat plates at the separationD(r),

5(r) = 5(D(r)) = 5(D0 − z(r)) (2)

(sincez 6 0 for the convex sessile drop under consideration). For mercury interacting with
a solid surface across an aqueous electrolyte solution, contributions to disjoining pressure
will come from electrical double-layer forces and van der Waals forces. It is conceivable
that there will be other forces present in this system, for example, solvation or hydrophobic
forces, but for the present purposes of illustrating the general behaviour of the system, it is
sufficient to consider a non-retarded van der Waals force and a simple form for double-layer
pressure derived from the linear Poisson–Boltzmann equation [3] which, for surfaces having
fixed potentialsψ01 andψ02, gives

5(D) = εκ2

2 sinh2 κD

[
2ψ01ψ02 coshκD − ψ2

01 − ψ2
02

] − A

6πD3
. (3)

In this equationε is the dielectric permittivity of water,κ is the usual Debye parameter, and
the last term is the van der Waals force, withA being the Hamaker function. A calculation
using Lifshitz theory, with mercury represented [4] by a free-electron model having a plasma
frequency of 1.66× 1016 rad s−1, givesA = 4.0 × 10−20 J atD → 0.

Recently we have presented results from numerical solutions of equation (1) for
symmetric [1] (ψ01 = ψ02) and asymmetric [2] (ψ01 6= ψ02) double-layer interactions. Figure
2 shows some representative behaviour. In figure 2(a) the disjoining pressures are plotted
for three combinations of surface potential: symmetric, asymmetric and antisymmetric. The
deformation of the drop’s surface under the influence of a disjoining pressure is illustrated
in figure 2(b). At large separations (A) the drop is not greatly deformed by the disjoining
pressure; at intermediate separations (B), where the disjoining pressure is repulsive, there is
some flattening of the drop; and at small separations (C) where the surface force becomes
attractive, the apex of the drop is drawn towards the solid and the drop shape becomes
elongated.

From figure 2(b) it can be seen that profilesB andC cross each other: far from the apex,
profile C lies between profilesA andB. It is illuminating to consider the separation between
the solid and a remote part of the drop where its deformation due to disjoining pressure is
negligible. In view of our experimental arrangement, a suitably remote part of the drop can
be taken at the edge of the capillary, where the drop is pinned; the distance between the
capillary and the solid is controlled experimentally. In figure 2(c) we plot the variation of
the minimum separation as a function of the position of the ‘grips’ that hold the drop, i.e.,
the distance,Dc, between the solid and the end of the capillary, shifted by a constantzc

(the height of the drop in the absence of deformation due to disjoining pressure). In other
words, thex-axis represents the position of the virtual apex of the undeformed drop, given
by Du = Dc − zc. If the drop is flattened then we haveD0 > Du, and if it is elongated then
D0 < Du. It can be seen from figure 2(c) that when attractive surface forces are present at
small separations (the dotted curve), there are two possible configurationsD0 for a given
distance between the flat surface and the capillary. The lower value (such as profileC) is
unstable, and the drop would be pulled into contact with the solid, flattening against it.

When the surface forces are repulsive and the pressure within the drop,Papp, does
not exceed the maximum disjoining pressure, as indicated for the top curve in figure
2(a), the repulsive forces flatten the drop. It can be seen from equation (1) that when
5(D0) = Papp, the curvature at the apex of the drop falls to zero. Pushing the drop towards
the surface only increases the flattening and increases the total force acting between the
drop and the solid, and the drop does not come closer to the solid than the separationD∗
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(a)

Figure 2. The effect of disjoining pressure (electrical double-layer and van der Waals forces) on
the shape of the drop. (a) The disjoining pressure between flat surfaces computed from equation
(3) for three different combinations of surface potential on the two surfaces:−50 mV/−50 mV
(dashed line),−50 mV/−10 mV (full curve) and−50 mV/+50 mV (dotted curve), at a 1:1
electrolyte concentration of 1.0 × 10−4 mol l−1. In the asymmetric case with two different
potentials of the same sign, the pressure changes from repulsive at large separations to attractive
at short separations, where there is charge reversal on the surface of lower potential [3]. A
typical internal pressure in the drop,Papp , is indicated by the chain line. (b) Drop shapes
computed from equation (1) for the case−50 mV/−10 mV with Papp = 100 Pa. Note that the
vertical scale is much smaller than the horizontal scale, so the drop is much less curved than it
appears in this figure. The drop flattens when the surface force at the apex is repulsive (profile
B) and it is elongated when the force is attractive (profileC). (c) The variation of the minimum
separation between the solid and the drop,D0, compared to the distanceDu between the solid
and the position of the virtual apex of the undeformed drop. When the disjoining pressure,
e.g. at−50 mV/−50 mV, exceedsPapp , the drop flattens (D0 > Du) and the drop never gets
closer to the solid thanD∗, the separation at which5(D∗) = Papp (about 110 nm in this case).
WhenPapp exceeds the maximum disjoining pressure, theD0 versusDu curve is re-entrant and
the lower branch, where dD0/dDu < 0 (e.g. profileC), is unstable.

at which 5(D∗) = Papp. This result, discussed in detail in reference [1], clearly shows
that deformation of a fluid drop has a dramatic effect on the total surface force acting on
it. The significance of this effect for bubble–bubble interactions in water is examined in a
forthcoming publication [5].

3. Experimental procedure

Our aim is to measure the deformation of a fluid drop under the influence of surface and
hydrodynamic forces. Mercury is selected as the fluid, because (a) its reflectivity allows
optical interferometry to be used to measure the shape and location of its surface; (b)
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(b)

(c)

Figure 2. (Continued)

its conductivity allows control of its surface potential; and (c) a wealth of information is
available on its surface charging behaviour in aqueous electrolyte solutions, from dropping
mercury electrode (DME) experiments [6]. Mica is chosen as the solid because it has
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a molecularly smooth surface, it can be prepared as very thin sheets of perfectly uniform
thickness which are ideal for the optical interferometry method described below, and because
its surface charging behaviour in aqueous solutions is known from numerous surface force
apparatus studies [7].

As shown schematically in figure 1, mercury is introduced into a chamber filled with
aqueous electrolyte, through a vertical capillary tube entering the bottom of the chamber. A
small pressure (∼102 Pa) is applied so that the drop protrudes from the end of the capillary,
while remaining pinned at the internal corner. The chamber and the capillary are both
machined from Kel-FR© (polychlorotrifluoroethylene), with the capillary having an internal
radius of ∼1 mm. At the top of a chamber is a window, with a thin, horizontal sheet
of mica glued to the lower surface. The window bearing the mica can be moved up and
down with a two-stage differential-spring mechanism similar to that used in the SFA [8],
allowing control of its position to better than 1 nm. The aqueous phase in the chamber is
in contact with a reference electrode, with a second electrode contacting the mercury, so
that the surface potential of the mercury may be varied. However, in the present series of
experiments, no potentials were applied. Optical interference between a partially reflecting
silver layer on the upper surface of the thin mica sheet and the surface of the mercury drop
allows the mica–mercury distance and the shape of the mercury drop to be measured to
high accuracy, employing fringes of equal chromatic order [8] observed in reflection.

Mercury is cleaned by washing in 10% nitric acid with agitation by bubbling oxygen,
followed by rinsing with water from a Millipore MilliQR© system. The same water is used
for experiments. The KCl is Analar grade from BDH. During experiments the surface of
the drop is renewed immediately before each set of measurements by forcing more mercury
through the capillary (with the mica moved far away) and spilling one or more drops to the
bottom of the chamber.

4. Results and discussion

Some illustrative results obtained in water and in 1 mM KCl solution are shown in figure 3, in
which data are plotted using the same axes as in figure 2(c), i.e. the minimum mica–mercury
separationD0 plotted as a function of the positionDu of the undeformed drop. These results
were obtained by driving the mica slowly towards the fixed capillary at a constant speed,
and subtracting the undeformed drop height from the capillary–mica distance to giveDu.

It can be seen that the two experimental curves qualitatively resemble the stable
(dD0/dDu > 0) regions of two of the theoretical curves shown in figure 2(c). The curve
measured in water corresponds to a purely attractive force (the dotted curve in figure 2(c))
with a measurable deformation of the drop detectable whenD0 < 400 nm. AsD0 decreases
to below 200 nm the elongated drop configuration becomes unstable and the mercury is
pulled abruptly into flat contact against the mica surface. In KCl there is some flattening
of the drop (D0 > Du) between 400 and 100 nm, but below about 60 nm the drop is pulled
into contact by an attractive force. This behaviour is like the solid curve in figure 2(c),
corresponding to a repulsive force at long range becoming attractive at shorter range.

Since the range of the attractive force is significantly reduced when electrolyte is added
to the water, the attraction can safely be ascribed to an electrical double-layer force. The
repulsion observed in KCl is (most likely) not a surface force, but the effect of hydrodynamic
pressure tending to flatten the drop. In water, the attractive force is of longer range, and it
affects the drop shape at largeD0 where the hydrodynamic pressure (which is proportional
to D−2) is very small. However, when the double-layer attraction is screened by KCl, the
hydrodynamic pressure is significant at separations up to 400 nm, and it flattens the drop
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Figure 3. The minimum mercury–mica separationD0 plotted as a function of the undeformed
position Du measured in water and in 1 mM KCl solution, with no potential applied to the
mercury. These measurements were obtained by driving the mica surface towards the fixed
capillary at a constant speed of 170 nm s−1. In water, the deformation (elongation,D0 < Du)
and the abrupt collapse to the mercury–mica contact (D0 = 0) indicates an attraction between
the mercury and mica; the electrolyte dependence suggests this is a double-layer force. In KCl
there is some flattening (D0 > Du) due to hydrodynamic forces before the attractive force pulls
the drop into contact with the solid.

before the attractive force becomes dominant atD0 < 100 nm.
Our theoretical analysis of drop deformation under the influence of surface forces shows

that measurable deformations occur with quite weak and long-range forces. The decay length
1/κ for the forces shown in figure 2(a) is 30 nm; figure 2(c) shows that the deformation
is significant at distances many times larger than this, even for weak forces such as in the
−50 mV/−10 mV case. The sensitivity of the drop shape to surface forces is confirmed
by our experiments, where deformation is clearly evident at 400 nm in water. In effect,
the drop itself is acting as a weak (and not necessarily linear) spring whose deformation
serves to detect the force. Theoretical calculations as described in section 2 indicate that
for small deformations the effective ‘spring constant’ is comparable to the mercury–water
interfacial tension (0.43 N m−1). The experimental results have the same qualitative form
as the theoretical curves, but a detailed analysis is made difficult by the presence of a
hydrodynamic pressure when the drop is moving towards the solid. This pressure is itself a
very important factor affecting the approach of a fluid drop to a solid surface, and our future
experiments will endeavour to separate the disjoining pressure from hydrodynamic pressure
(by varying the applied potential and the speed of approach), in the hope of measuring both.

The observation of an attractive double-layer force, without any repulsion to prevent
the mercury from coming into contact with mica, is in contrast to the results of Gupta
and Sharma [9], who measured repulsive disjoining pressures between mercury and a
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silica surface across salt solutions, by applying an appropriate potential to the mercury
to give a repulsive double-layer force. Those authors also report a repulsive hydration
force between mercury and silica, whereas no such force is observed here. A short-
range hydration repulsion is generally observed between two silica surfaces interacting in
aqueous solutions at all electrolyte concentrations [10], whereas a comparable force is only
observed between mica surfaces at electrolyte concentrations higher than those employed
in the present experiments.

In summary, we have presented a description of an experiment designed to measure
surface and hydrodynamic forces between a mercury drop and a flat solid surface. Initial
results show that weak, long-range forces can be detected with this technique. Theoretical
analysis of the interplay between surface forces and deformation of the fluid drop shows a
rich variety of behaviour [2] and indicates that deformation is a very important consideration.
This may have far-reaching implications for the proper consideration of colloidal interactions
between fluid drops.
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